Diagram of Scirtoritrum iridothrix:

- excurrent pore
- skirt
- support rod
- ring muscle
- sensory spine of silica
- outer spicule layer
- inner nervous layer
- mesogel
- tentacle
- claws
Table of Contents

Articles:

- **How to Blow Air Through Sticks, or, Xylem Structure and Function**
 David J. Hicks
 Page 3

- **Auxin and Protein Phosphorylation in Plants**
 Soon Y. Kim and Timothy J. Mulkey
 Page 7

- **Qualitative and Quantitative Pedigree Analysis: Graph Theory, Computer Software, and Case Studies**
 John R. Jungck and Patti Soderberg
 Page 12

News & Views:

- **Book Review: Time's Arrow, Time's Cycle by Stephen J. Gould**
 Patti Soderberg
 Page 23

- **Call for Nominations: President, Secretary, Steering Committee Members**
 Page 11

- **Join us at the AMCBT Annual Conference: A letter from the Past President**
 Sr. Marion Johnson
 Page 26

- **Second Call for Papers: 1995 AMCBT Meeting, Alverno College "Breaking the Technology Barrier"**
 Page 22

- **AMCBT 1995 Annual Conference TENTATIVE Schedule**
 Page 28

- **Why come to Milwaukee? Great things to see and do at AMCBT 1995**
 Page 31

- **AMCBT Membership Application Form**
 Page 32

Cover Illustration: Diagram of *Scirtovitrum iridothrix*, a benthic invertebrate inhabiting the shallow continental slope of Oceanus IV. The name "iridescent-haired glassy leaper" comes from the reflective coloration of the silica spines and the animal's ability to launch itself into the water column when attacked.

The species was created by Cathy Peterson, a student in the invertebrate biology class at Alma College, as part of three-species exercise throughout the term. Details on the project are available through Kay Grimnes, Department of Biology, Alma College, Alma, MI 48801.
Advertisements appearing in *Bioscene* do not reflect the opinion of the Editorial Board. Please submit all manuscripts directly to the Editor. We prefer receiving two printed copies and one in computer readable form. We work with the following word processors on the following computers: Microsoft Word, MacWrite and WordPerfect on the Macintosh, and WordPerfect on IBM PC compatibles. Final copy is prepared in Quark XPress on a Mac Centris 650. If you can submit your manuscript only on another system, please check with us beforehand. We can receive manuscripts electronically by connecting through Applelink where our address is BioQUEST. If you are connecting to us from BITNET via INTERNET, then our address is HOLEVAST@BELOIT.EDU. Please address file to AMCBT. All manuscripts will be sent out to two members of the editorial board for review. In the case of a split decision, the manuscript will go to a third reviewer. The next deadline in 1995 is May 15.

Bioscene Editorial Board:

Chairperson:
Ethel Stanley
Biology Department
Millikin University
Decatur, IL 62522

Secretary:
George Garoian
Biology Department
Southern Illinois University
Carbondale, IL 62901

William Brett
Biology Department
Indiana State University
Terre Haute, IN 47809

Buzz Hoagland
Biology Department
Westfield State College
Westfield, MA 01086-1630

Joyce Cadwallader
Biology Department
St. Mary-of-the-Woods College
Terre Haute, IN 47876-0070

Phyllis Kingsbury
Biology Department
Drake University
Des Moines, IA 50311

Dave Finley
Biology Department
Lincoln University
Jefferson City, MO 65101

Malcolm P. Levin
Biology Department
Sangamon State University
Springfield, IL 62708

Robert L. Wallace
Biology Department
Ripon College
Ripon, WI 54971

C. Robert Wikel
Biology Department
Doane College
Crete, NE 68333

Ray Reed
Biology Department
Jefferson Community College
Louisville, KY 40210

Timothy J. Mulkey
Biology Department
Indiana State University
Terre Haute, IN 47809

Suggestions for Manuscripts

<table>
<thead>
<tr>
<th>Announcements</th>
<th>Sources of Funding</th>
<th>Biology Policy Issues</th>
<th>Review of Software/Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letters to the Editor</td>
<td>Sociology of Biology</td>
<td>Minority Education</td>
<td>Philosophy of Biology</td>
</tr>
<tr>
<td>Book Reviews</td>
<td>Courses that Work</td>
<td>Women in Biology</td>
<td>History of Biology</td>
</tr>
<tr>
<td>Laboratories that Work</td>
<td>Professional School</td>
<td>Computer Advice</td>
<td></td>
</tr>
</tbody>
</table>

Bioscene is the official publication of the Association of Midwestern College Biology Teachers.
How to Blow Air Through Sticks, or, Xylem Structure and Function

David J. Hicks
Biology Department
Manchester College
North Manchester, Indiana 46962

Many botany and plant physiology courses focus on the relationship between plant structure and function. Commonly used examples include flower color and morphology, leaf size and shape, stomatal wall structure, and so on. These concepts can easily be demonstrated in the laboratory or classroom. However, although most courses include lecture or discussion about the adaptive significance of internal anatomy, relatively few labs give students practical experience with this facet of plant biology. I have developed a laboratory that focuses on the relationship between the structure and function of the tracheary elements of the xylem.

Theory

Much of the theory and data concerning water flow through the xylem was reviewed and synthesized in Zimmerman's (1983) excellent book on xylem structure. I will give only a very brief summary.

Plants may possess two types of water-conducting tracheary elements, tracheids and vessels. (The water-transporting capacity of other xylem cells is very minor and may be ignored.)

Structure strongly influences the rate at which water moves through these cells. The inner walls of tracheary elements are hydrophilic and entrain a boundary layer of water molecules. The thicker the boundary layer in proportion to the cross-sectional area of the cell lumen, the more the movement of the average water molecule is retarded, and the lower the amount of water passing through the cell. In cells of small diameter, the boundary layer is thick relative to the lumen size, the average rate of movement is slow, and the rate of water flow is low.

The relationship is mathematically described by the Poiseuille (or Hagen-Poiseuille) equation:

\[\text{Flow rate} = \frac{\pi r^4}{8 \eta} \left(\frac{\Delta P}{\Delta x} \right) \]

where \(r \) is the radius of the cell lumen, \(\eta \) is the viscosity of water, \(\Delta P \) is the pressure difference between one end of the cell and the other, \(\Delta x \) is cell length, and \((\Delta P/\Delta x) \) is the pressure gradient driving the flow. In the laboratory \(\eta \) and \((\Delta P/\Delta x) \) are experimentally controlled, so the primary factor controlling flow rate is the radius of the lumen. Because of the fourth power in the equation, the dependence of flow rate on cell size is very strong. Doubling the radius of a cell increases the flow by a factor of 16.

The Poiseuille equation, therefore, tells us that differences in the lumen size of tracheary elements can have a major influence on the rate at which they transmit water. Lumen diameter does vary quite considerably. Tracheids typically have diameters of 20 μm or less, while vessels usually range from 50 to 100 μm, with some as large as several hundred μm in diameter.

Water transport is influenced by the diameter of tracheary elements in several additional ways. Although large-diameter elements conduct water more rapidly than smaller ones, larger elements have a significantly elevated risk of being blocked by air bubbles that vapor-lock the element and prevent flow. Thus, in conditions where water supply is limiting, there is a tradeoff between the rate of water supply and its security.

A further factor that must be considered in interpreting wood function of angiosperm trees is the growth pattern of the xylem. Some species are ring-porous, meaning that only the current year's xylem transports water. Other species are diffuse-porous, meaning that several years' worth of xylem is active. Growth patterns and vessel diameter are correlated; ring-porous species tend to have larger vessels.

Lab Procedure

The goal of this lab was to allow students to relate the rate of gas flow through the wood to the structure of the water-carrying cells. Zimmerman
(1983) describes a number of ways to make measurements of flow rate using water or other liquids. However, gas will pass through the tracheary elements as well as water, and it is easier to measure air flow than water flow. The basic procedure in this lab is thus to pass a stream of air lengthwise through a wood sample. The flow rate of samples from various species or of different sizes of the same species is measured and related to properties of the conducting cells.

I begin by having students examine prepared slides of cross, radial and tangential sections of the woods to be used. Tangential and radial sections are especially useful in visualizing the way in which vessel elements stack up to make continuous vessels. I also have students make cross-sections of their own samples, but it is difficult to produce a useful longitudinal section by hand, so I use prepared slides in this section. Wood slides from many species are available from most biological supply houses.

Various types of wood can be used for this lab. However, the samples must be such that gas can flow lengthwise only through tracheary elements. Thus, species with hollow or very porous pith should not be used. Likewise, specimens with cracks, branches, or other alternative pathways for air flow should be rejected. Since pruners crush the tracheary elements at the cut end of the wood sample, the surface must be recut with a razor blade. I have never used herbaceous plants for this experiment, but I suspect that robust stems such as those of mature sunflowers might work.

The technique for measuring flow rate is quite straightforward (Figure 1). An appropriate wood sample is connected to an air supply that is maintained at constant pressure. Our physiology lab has a compressed air line, to which we have added a pressure regulator. I use air at 5 p.s.i. I choose twigs that fit tightly into standard rubber tubing and wrap wire around the tubing to seal the connection.

The other end of the wood is placed under water in a basin and a graduated cylinder or other calibrated container is placed over the end of the sample to catch escaping air bubbles. (This method allows the sample to be checked for leakage through the pith or laterally through the bark, knotholes, or pith.) The collection container is filled with water by submerging in the basin. The container is then inverted while still under water. A large basin is needed; I use a sink. Air is collected for a known length of time, the volume is measured, and the flow rate (e.g., in units of ml per second) is calculated.

Since it is possible for an improperly secured sample to shoot out of the tubing, students should wear safety glasses to protect their eyes.

Size measurements of the tracheary elements are also needed. Students cut cross sections of the wood samples with razor blades. If the slices are wedge-shaped, at least some areas will be thin enough to use. The students measure the diameter of the largest tracheary elements using eyepiece micrometers or a calibrated video microscope.

Some Results
The goal of my lab was to determine the effects of tracheary element diameter and vessel length on flow rate. Thus, I use species that differ significantly in these features. The data presented here came from three angiosperm trees (white ash, Fraxinus americana; sugar maple, Acer saccharum; and white oak, Quercus alba), a woody vine (grape, Vitis riparia), and a gymnosperm tree (white cedar, Thuja occidentalis).

Rates of air flow through 10 cm long pieces of wood are shown in Table 1. Cedar lacks vessels, and so allows very little flow of air. Sugar maple does have vessels, but they are quite short. It can be inferred from the lack of flow that vessels do not stretch all the way through a 10 cm sample. In

![Figure 1. Apparatus for measuring air flow through a wood sample.](image-url)
contrast, air bubbles move through grape stems so rapidly that it is difficult to measure the rate with a small container.

Flow rate and the mean diameter of the largest vessels are strongly related (Figure 2). Species with larger vessels have higher flow rates.

Differences in vessel length can also be detected with this method. In angiosperms, most of the air flow is through vessels. Vessels range in length from less than a meter to nearly 20 m. Vessels form open tubes that start at various points in the root system and end at various points in the shoot. A stem sample will thus contain some vessels that pass all the way through it (and so will transmit pressurized air), and some that terminate within the sample (which will not let air pass through). Cutting the sample opens some of the latter. Thus, when a twig section is shortened, the air flow rate increases. For a grape twig, for instance, reducing the length from 20 cm to 5 cm nearly tripled the air flow rate. Grape, like other vines, is well known for having very long vessels. On the other hand, sugar maple has rather short vessels. For this species, no air flow was detected for samples longer than 5 cm. White cedar did not allow any air to pass until the twig was shortened to 1 cm.

It should be noted that this method can only be used for rough comparisons of species, since the pressure gradient per unit length (ΔP/Δx) changes as sections of twig are removed.

Questions for Students

1. Make a graph showing your relationship between mean vessel diameter and air flow rate. What is the relationship? How do these results relate to the Poiseuille equation?

2. You measured only the diameters of the largest tracheary elements. Why is this a legitimate simplification?

3. What factors might explain deviations between our observations and results expected from the Poiseuille equation? Consider fluid flow in tracheids vs. vessels, and in ring-porous vs. diffuse porous species. What further measurements or calculations could you make to correct for these factors?

4. It is frequently found that flow rates are much less than those predicted by the Poiseuille equation. What features of tracheary elements could explain this deviation? (Hint: The equation was developed for capillary tubes with completely smooth inner walls. Is this an accurate description of a tracheid or vessel element?)

5. Why did the gas flow rate increase in shorter twig samples? What can you infer from the relative lengths of vessels in different species? Why was the gymnosperm wood so different from the other species?
6. Given that large-diameter vessels can transport water most rapidly, why do some plants have small-diameter vessels or even lack them entirely?

Modifications
I have had students in introductory biology classes and in field courses do a similar exercise using lung power rather than compressed air. A length of straw can be inserted in the tubing as a disposable mouthpiece. Students are surprised by the length of stem through which they can blow air, especially if a vine is used.

Xylem anatomy and function are known to vary with environmental moisture supply. Sampling plants from habitats that differ in soil moisture might yield some interesting results.

Literature Cited

Editor’s Note: The two reviewers liked this article very much; however, they also were concerned about more items than we would normally expect the author to have to substantially revise their manuscript. Therefore, some of their concerns are shared here because they may help others to supplement this laboratory exercise in ways that the reviewers believe would be profitable.

"Love the approach! We need more interactive, undergraduate botany labs like this! However, I’m uncertain of the conclusions. Why not leave the lab open-ended and have students hypothesize about and support the differences?

Some of the explanations are too incomplete and all of the references are from secondary sources. While Zimmerman (1983) is a fine monograph, it would be helpful if students were also pointed to some of his original research (Zimmerman 1978, Jeje and Zimmerman 1979) on hydraulic architecture and resistance to water flow. Ziegler (1982?) also has an excellent introduction to the biophysics of water movement in plants that illustrates several apparatuses for measuring positive and negative pressure gradients. Two other aspects that would be helpful to students (especially given some of the author’s challenges to students) are the theoretical basis (Aifantis 1977; Rand 1983; Tyree 1988) of fluid mechanical models of plants and the evolutionary analyses of interspecies comparisons (Niklas 1984, 1985). Gartner et al. (1990) provide recent research on anatomical features that may account for the differences in conductivities of vines and trees as emphasized in the discussion by the author. Please give students the resources and freedom to explore such an interesting approach that you have developed."

Literature Cited

Auxin and Protein Phosphorylation in Plants

Soon Y. Kim and Timothy J. Mulkey
Biology Department
Indiana State University
Terre Haute, Indiana 47809

Auxin controls many physiological processes such as cell elongation, cell division, and differentiation in plants and elicits rapid responses in organelles such as plasma membrane, golgi apparatus, endoplasmic reticulum, and the nucleus as well as in the cell wall. Auxin functions through a signal transduction mechanism (Figure 1) which converts the external hormonal signals to various cellular responses. Protein phosphorylation is a post-translational reversible covalent modification which is recognized as a major regulatory mechanism by which various cellular metabolic activities are controlled (Budde and Chollet, 1988; Pierce Chemical, 1987). It is known that many key regulatory proteins are phosphorylated. This phosphorylation leads to alteration of biological properties in animal cells (Nishizuka, 1986; Pierce Chemical, 1987). Protein kinase plays an important role in signal transduction by amplifying the external signal (Nishizuka, 1986). External signals are transmitted to the inside of the cell by second messengers and these messengers in turn regulate the activity of protein kinases and phosphatases; thereby resulting in the expression of physiological responses. Messenger-regulated protein phosphorylation by these enzymes is required to maintain the physiological response because the increase in the level of second messengers is transient.

The action of auxin may be linked to calcium which plays an essential role in the growth of plant cells. Auxin-promoted growth of isolated Avena (oats) coleoptile sections is inhibited by calcium chloride; the inhibitory action of calcium is expressed within 2 min (Cleland and Rayle, 1977). The movement of calcium is also correlated with auxin transport in roots exposed to gravistimulation (Lee et al., 1983). Based on these results, the effects of auxin may be mediated by auxin-induced changes in internal calcium level. The calcium binding protein, calmodulin (CaM), is found in plants (Anderson and Cormier, 1978); calcium increases the in vitro phosphorylation of proteins in several plant species (Hetherington and Trewavas, 1984; Salimath and Marmé, 1983; Veluthambi and Poovaiah, 1986). Calmodulin may be involved in auxin-regulated activities in plants because of auxin mediation of calcium levels.

Auxin also alters the level of phosphorylation of pea epicotyl proteins (Reddy et al., 1987). Furthermore, Zbell and Walter-Back (1988, Zbell et al., 1989) have reported that auxin affects the phosphoinoside turnover response in cell membrane.

In this laboratory exercise, the effect of auxin on in vitro protein phosphorylation in the cytoplasmic and membrane fractions of the primary roots of maize is examined.
GOALS OF THE EXPERIMENT
1. Examine the effect of auxin on in vitro protein phosphorylation in maize (Zea Mays) roots.
2. Comparison of the effect of auxin and calcium on in vitro protein phosphorylation in maize roots.

TIME REQUIREMENTS
0.25 hour (approximately) 3 days prior to experiment (soak grain)
3.00 hours (approximately) 1.5-2.0 days prior to experiment (plant grain)
2.00 hours (approximately) 1 days prior to experiment for gel preparation
4.00 hours to prepare cytoplasmic and membrane fractions
2.00 hours to prepare and load samples for electrophoresis
4.00 hours to run the gel
1.00 hour to separate the gel from glass plates
12.00 hours or overnight to stain the gel
8.00 hours or more to destain the gel
2.50 hours to dry the gel
2.0-3.0 days to expose the gel to film
0.5 hours to develop the film

MATERIALS AND EQUIPMENT
Acetic acid
Acrylamide
Ammonium persulfate
ATP (gamma-32P, specific activity 185 MBq/ml)
bis-Acrylamide
Bromphenol blue
Centrifuge and Ultracentrifuge; tubes
Coomassie brilliant blue R-250
Dark room
Developer and fixer for film
Dithiothreitol (DTT)
EDTA (ethylenediamine tetraacetic acid)
EGTA (ethylene glycol bis[8-amino ethyl ether]N,N,N',N'-tetraacetic acid)
Electrophoresis kit
Ethanol
Film (Kodak X-OMAT AR, 13 x 18 cm)
Freezer (-70°C)
Glycerol
Glycine
Grain, corn
HCl
Indole 3-acetic acid (IAA)
Magnesium chloride
2-Mercaptoethanol
MES (2-[N-morpholino]ethane sulfonic acid)
Methanol
Microcentrifuge; at least 11 tubes needed / group
Miraclot
Mortar and pestle
Paper towel
Plastic trays and tub
PMSF (Phenylmethylsulfonyl fluoride)
Protein assay kit (8)
SDS (Sodium lauryl sulfate)
Sea sand
Standard marker (Dalton Mark VI, Sigma, St. Louis)
Sucrose
N,N,N',N"-Tetramethylethylenediamine (TEMED)
Tris (Tris[hydroxymethyl] amino methane)
Triton X-100
Water bath

METHOD
Seedling Preparation. Corn caryopses (about 10 trays; approx. 300 grains per tray) are soaked overnight in running tap water to prevent anaerobiosis. Seeds germinate between wet paper towels on plastic trays in a vertical position. To obtain straight primary roots you should place the corn seeds in rows on a tray covered with 2-3 layers of paper towel. Cover the grains with 3 or 4 layers of paper towels; place another tray over final layers of towels to hold the paper towels and seeds in place. Position the trays vertically in a shallow tub containing 1-2 inches of water. Primary roots of approximately 1.5-2.0 cm should be used for the experiment. This should require 2-3 days of growth, depending upon the cultivar and temperature.

Isolation of Membrane and Cytoplasmic Fractions. One-cm root segments (at least 3 g of roots) which exclude the root tip (terminal 1 mm) are ground in ice with homogenization buffer containing 50 mM MES-NaOH, pH 7.0, 5 mM MgCl2, 0.5 mM DTT, 0.25 M Sucrose, 5 mM EDTA, and 0.5 mM PMSF using a mortar and pestle (1:2 w/v). All procedures are performed at 4°C. The homogenate is filtered through Miracloth and centrifuged for 10 min at 7,000 g to discard nucleus and cell wall. The supernatant is collected and centrifuged for 30 min at 100,000 g for 30 min. After centrifugation, the supernatant
is used for procedures requiring cytoplasmic fractions. The pellet is suspended in homogenization buffer at the same volume and centrifuged again at 100,000 g for 30 min. The final pellet is suspended in homogenization buffer (1 ml/5 g initial fresh weight of root), and is used for procedures requiring membrane fractions. The protein content of fractions is determined by BCA Protein Assay kit (8).

Protein Phosphorylation. In vitro protein phosphorylation assays are conducted at 30°C in a total reaction volume of 100 µl containing 50 mM MES-NaOH (pH 7.0), 0.5 mM DTT, 5 mM MgCl₂, 0.2 mM EGTA and 200 µg of membranous or cytoplasmic proteins. Ten µl of 1% Triton X100 is added 15 min before phosphorylation of the membrane only fractions. The reaction is initiated by adding 1 µCi [gamma-32P]-ATP. The reaction is terminated after 1 min by adding the same volume (100 µl) of electrophoresis sample buffer (Table 1, sample buffer) and by boiling the reaction mixture for 5 min. The reaction mixture of membrane protein is centrifuged at 10,000 g for 5 min in a microcentrifuge and the supernatant is used for analyses by SDS-PAGE. The reaction mixture of cytoplasmic protein is used without further centrifugation.

Gel Preparation. Linear gradient gel (12 to 18%) is prepared as shown in Table 2. Each mixture degasses for 10 min by vacuum, and add 70 µl 10% freshly made ammonium persulfate and 10 µl TEMED. Pour 5 ml of each gel solution from high % to low %; bottom is 18% and top is 12%. Layer 2 ml of distilled water on top of gel, and leave over night to polymerize. Stacking gels are prepared as shown in Table 3 after the running gel is polymerized. Degas the mixture for 10 min, add 50 µl of 10% ammonium persulfate and 10 µl TEMED. Pour carefully with the electrophoresis gel comb in place, and leave it for 1.5-2.0 hours to polymerize. Remove the comb and carefully wash the wells produced by the comb with distilled water to remove the bubbles in the lanes.

Running the Electrophoresis Gel. Pour the electrode buffer into the bottom chamber, and place the prepared gel plates vertically in the electrophoresis apparatus. All the bubbles in the bottom of the gel plates should be removed by the pipette which has a curved tip or a syringe with a bent needle. Samples, terminated reaction mixture, are applied to each lane. The volume is 50 to 75 µl. Carefully pour electrode buffer in the upper chamber. Electrophoresis is started at 25 mA for 1 hr and then the current is changed to 30 mA for 3-4 hours. Initial voltage is 60-80 volts and rises to around 210 volts. When the dye reaches 2 cm from the bottom of the plate, turn off the

Table 1. Stock Solutions for Electrophoresis.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acrylamide</td>
<td>30% and 50%; dissolve 30 and 50 g acrylamide in separate 100 ml aliquots of distilled water, and filter it. Store at 4°C in the dark.</td>
</tr>
<tr>
<td>bis-Acrylamide (1%)</td>
<td>dissolve 1 g bis in 100 ml distilled water, and filter it. Store at 4°C in the dark.</td>
</tr>
<tr>
<td>Running Buffer</td>
<td>1 M Tris-HCl; pH 8.7; dissolve 60.5 g Tris in 250 ml distilled water, and adjust to pH 8.7 with HCl, and then make to 500 ml with distilled water.</td>
</tr>
<tr>
<td>Stacking Buffer</td>
<td>1 M Tris-HCl; pH 6.8; dissolve 12.1 g Tris in 70 ml distilled water, and adjust to pH 6.8 with HCl, and then make to 100 ml with distilled water.</td>
</tr>
<tr>
<td>Sample Buffer</td>
<td>50 ml; frozen as 5 ml aliquots; dissolve 0.0186 g EDTA (1 mM), a pinch of bromophenol blue and 15 g glycerol in 30 ml distilled water, then add 0.5 ml 10% SDS, 6.2 ml 1 M Tris-HCl pH 6.8, and 0.45 ml 2-mercaptoethanol, and make to 50 ml with distilled water.</td>
</tr>
<tr>
<td>Electrode Buffer</td>
<td>pH 8.3; dissolve 5 g Tris and 38.8 g Glycine in 700 ml distilled water, then add 10 ml of 10% SDS, adjust pH to 8.3, and make to 1000 ml with distilled water.</td>
</tr>
<tr>
<td>Staining Solution</td>
<td>dissolve 0.35 g Coomassie blue brilliant R-250 in 454 ml of 95% ethanol. Add 454 ml distilled water and 92 ml acetic acid.</td>
</tr>
<tr>
<td>Destaining Solution</td>
<td>mix 75 ml of 95% ethanol, 75 ml of 95% methanol, and 50 ml of acetic acid, then add 800 ml of distilled water.</td>
</tr>
</tbody>
</table>
Table 2. Preparation of Running Gel (12-18% Acrylamide). Add the volumes in ml of each of the 5 solutions listed in the column under a % gel to obtain a 20 ml volume of a particular acrylamide solution.

<table>
<thead>
<tr>
<th>Solution</th>
<th>12%</th>
<th>14%</th>
<th>16%</th>
<th>18%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% acrylamide</td>
<td>4.8</td>
<td>5.6</td>
<td>6.4</td>
<td>7.2</td>
</tr>
<tr>
<td>1% bis-acrylamide</td>
<td>2.14</td>
<td>2.14</td>
<td>2.14</td>
<td>2.14</td>
</tr>
<tr>
<td>1 M Tris (pH 8.7)</td>
<td>7.74</td>
<td>7.74</td>
<td>7.74</td>
<td>7.74</td>
</tr>
<tr>
<td>20% SDS</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>distilled H2O</td>
<td>5.22</td>
<td>4.42</td>
<td>3.62</td>
<td>2.82</td>
</tr>
</tbody>
</table>

Table 3. Preparation of 5% Stacking Gel (5%). Add the volume of each of the 5 solutions listed to obtain 10 ml of 5% stacking gel.

<table>
<thead>
<tr>
<th>Solution</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>30% acrylamide</td>
<td>2.7 ml</td>
</tr>
<tr>
<td>1% bis-acrylamide</td>
<td>2.1 ml</td>
</tr>
<tr>
<td>1 M Tris</td>
<td>2.0 ml</td>
</tr>
<tr>
<td>20% SDS</td>
<td>0.08 ml</td>
</tr>
<tr>
<td>distilled H2O</td>
<td>9.2 ml</td>
</tr>
</tbody>
</table>

power supplier. Take the gel out carefully and stain overnight in staining solution (Table 1). The stained gel is destained in the destaining solution (Table 1) for 8 hours or more until bands can be observed and background is completely clear. The destained gel is placed on wetted filter paper and covered with wetted cellophane, remove all The bubbles inside the cellophane are all removed and dried. The completely dried gel is exposed to x-ray film in a cassette and keep at -70°C for 2-3 days.

EXPERIMENTAL PROCEDURES
1. One day prior to experiment, prepare the running gel.
2. Remove the tip of primary roots (1 mm) and make a 1 cm segments. All segments of roots should be kept in liquid nitrogen or ice.
3. Measure the fresh weight of segments (at least 3 g).
4. Grind the segments with homogenization buffer, and prepare cytoplasmic and membrane fractions (see METHOD). During this step, prepare the stacking gel and wait to polymerize.
5. Prepare the reaction mixture in microcentrifuge tubes and add each concentration of IAA (1 μM to 0.1 nM). This experiment need 11 tubes such as 1 for standard marker, 5 for membrane fraction, and 5 for cytoplasmic fraction with each concentration of IAA.
6. Start the reaction by adding 1 μCi [gamma-32P]-ATP and terminate the reaction by adding 100 μl sample buffer.
7. Load the sample (50 to 75 μl) in each lane, and start electrophoresis (see METHOD).
8. Place the gel stain in staining solution, and destain. Gel is then dried and exposed to film at -70°C for 2-3 days.
9. Develop the film and observe the pattern of bands which occur phosphorylation.

OBSERVATIONS AND QUESTIONS
Compare the pattern of phosphorylation of membrane and cytoplasmic fractions. Are proteins phosphorylated in IAA treated samples which are not phosphorylated in the controls? Are any proteins phosphorylated in the controls which are not observed in the IAA treated samples?
Observe the effects of various IAA concentrations on protein phosphorylation in membrane and cytoplasmic fractions. What sizes of protein are phosphorylated in the various concentrations of IAA? Are different proteins phosphorylated at different IAA concentrations?
Is there a difference in the stained gel (total protein pattern) between the controls and the IAA treatments?

SUGGESTION FOR ADDITIONAL EXPERIMENTS
1. Add calcium chloride (1 mM to 1 μM) or EDTA/EGTA (1 mM to 80 mM) to the reaction mixture and observe the effect of calcium on in vitro protein phosphorylation.
2. Gravistimulate roots and separate upper and lower halves of the roots after 60-90 min. Compare the protein phosphorylation of the upper and lower halves of gravistimulated roots and control roots.
3. Compare the phosphorylation patterns which are observed with auxin treatment to the phosphorylation patterns observed in tissue treated with diacylglycerol, an activator of the second messenger system.
Literature Cited

Send recommendations to:

Professor Barbara Newman
Biomedical Sciences Department
Southwest Missouri State University
901 S. National Avenue
Springfield, MO 65804-0094

e-mail: SAR978@SMSVMA
Phone: (417)-836-5300
FAX: (417)-881-5208

Please send out recommendations of members whom you believe both would serve the organization well and would be eager to be elected.
Pedigrees, fate maps, and phylogenetic trees are three widely used graphical metaphors for representing historical relationships in genetics, developmental biology, and evolution. The word pedigree emanates from the French word for a stork's leg and three-toed foot (Bradie, pers. comm.). While widely employed in genealogy, ontogeny, and phylogeny, students struggle sometimes with comprehending the inferential power of these diagrams. Therefore, we have developed: a series of elementary mathematical tools for re-representing pedigrees; pedigree generators; pedigree-driven database management systems; and, case studies for exploring genetic relationships.

One tool for examining a pedigree is to simplify it to a genetic graph. Inbreeding is most easily seen in this simplified representation of a pedigree. In 1736, Euler, the Swiss mathematician, published a solution to an entertaining puzzle on traversing seven bridges between the two banks of a river and two islands in Konigsberg without ever traversing the same bridge twice. He demonstrated that no such solution existed by establishing a logical system henceforth known as graph theory. We believe that the principles set forth here have considerable pedagogical promise as alternative ways of presenting genetics which will hopefully simplify genetics to and/or be appealing to you. Furthermore, these principles demonstrate that graph theory as an elementary subset of modern mathematics has considerable potential for application to biological problems.

Some of the fundamental definitions of graph theory are:

1. A graph is a set of points (called vertices) and line segments (called edges) connecting pairs of vertices. We can assume for our purposes that a graph is a subset of real 2-or-3-dimensional space.

2. A directed graph (digraph) is a graph with a direction, usually indicated by an arrow, assigned to every edge.

Thus, the simplest dioecious genetic graph is simply two parents and one offspring (Figure 1).

Figure 1. Simplest genetic graph.

Alternatively, the possible genotypes resulting from a mating could be represented by Figure 2.

(3) Notation: If G is a digraph, and A is a vertex of G, then the number of incoming edges to A is denoted by \(p^* (A) \) and the number of outgoing edges from A is denoted by \(p (A) \).

Every biology student can readily agree that each zygote must have two and only two biological parents, although one or both of them may be unknown. Also, any individual's parents consist of one female and one male. Finally, it is equally obvious that no one can be their own parent. Ore (1963) summarized these three biological axioms of sexual propagation in terms of graph theory:

(a) \(p^* (A) \leq 2 \) for all \(A \): no vertex has more than two incoming edges

(b) Every circular alternating path has a number of edges divisible by 4.

(c) The graph of a genetic experiment is acyclic.
Secondly, we can illustrate Ore's (1963) point (b) by the following illustration of an impossible genetic graph (Figure 3). If parent P, is assigned as a female, then since P₁ and P₂ are the parents of child C₁, P₂ must be a male. Similarly P₁ and P₃ are the parents of child C₂; therefore, P₃ must also be male. However, P₂ and P₃ are the parents of child C₃; hence, both of them cannot be males. The reader or student is invited to try other circular alternating paths before generalizing about the divisible by 4 rule. Note exceptions in plants, protists, bacteria and hermaphroditic animals.

Thirdly, while no individual is his own ancestor, we can take exception to Ore's (1963) stipulations: "For instance, since no individual may marry his own sister or brother there can be no configuration in our graph of the form given in Figure [4]. Since no individual may marry one of his parents there are no configurations of the type represented in Figure [5]." Unfortunately, Ore confuses both taboos and marriage with the realities of genetic relationship. Children can result both from incestuous and illegitimate matings; genetic graphs should reflect the actual biological heritage.

Crow (1976), following the work of Sewall Wright, has actually employed genetic graphs to...
teach the analysis of inbreeding; however, he referred to his graphs of pedigrees as "arrow diagrams." Although his arrow diagrams implicitly follow Ore's (1963) three fundamental principles of genetic graphs, they were never explicitly stated. The pedigree in Figure 6 can be easily represented by the graph in Figure 7.

If we introduce an additional definition of graph theory, then the graph can be further simplified.

(4) A terminal edge is an edge between two vertices A and B such that there are either no other edges from A or no other edges from B. Terminal edges cannot be part of a known inbreeding pathway. Thus, if a student is making a digraph of an inbred pedigree, then they should be entreated to:

(a) ensure $p^*(A) \leq 2$ for every vertex in the digraph;
(b) ensure all circular alternating digraphs are divisible by 4;

Figure 6. An inbred pedigree.

Figure 7. Genetic graph of the pedigree in Figure 6.
(c) ensure the digraph is acyclic; and
(d) remove all terminal edges.

This policy would result in a genetic graph of the pedigree in Figure 6 which is illustrated in Figure 8.

The application of this policy reduces the arrow diagram or genetic digraph of an inbred pedigree, with sufficient self-checks, to the point where now subjective advice can be given for further simplifying the digraph with little room for confusion. At this point, the student should remove all edges which are not on circular paths; that is, if we want to calculate the inbreeding coefficient of individual IV-1, then we are only interested in retaining those directed edges for each parent of IV-1 which emanate from a common vertex (vertices I-3 and I-4). By applying this further restriction, the result is illustrated very simply by Figure 9 and Table 1.

We believe that the addition of these few principles of graph theory can help make the teaching of inbreeding analysis more explicitly logical and thus easier to learn. Additionally, we would like to reiterate the fact that you can check your arrow diagram of a pedigree to see if it fits the general rules of genetic digraphs.

Another alternative for representing inbreeding is the "cyclogram" illustrated in Figure 10 which was developed by Nemat Hashem (1983), a genetic counselor in Cairo, Egypt.

Wright's formula for the inbreeding coefficient can now be readily applied:

$$I = \sum_{p=1}^{k} \left(\frac{1}{2} \right)^{n-1} \left(1 + F_A \right)$$

- I = inbreeding coefficient of individual I; or, the probability that both alleles at a given locus in individual I came from a single ancestor
- k = the number of independent circular paths
- n = the number of directed edges in a given circular path
- F_A = the inbreeding coefficient of a common ancestor; or, zero, if no additional information is known about the ancestry of the origin of a circular path

If we apply this algorithm to the pedigree in Fig. 9, then the following calculations will result:

- $F_{IV-I} = \left(\frac{1}{2} \right)^{6-1} \left(1 + F_{I-1} \right) + \left(\frac{1}{2} \right)^{5-1} \left(1 + F_{I-4} \right)$
- $F_{IV-I} = \left(\frac{1}{2} \right)^{3} \left(1 + 0 \right) + \left(\frac{1}{2} \right)^{2} \left(1 + 0 \right)$
- $F_{IV-I} = \left(\frac{1}{32} \right) + \left(\frac{1}{32} \right)$
- $F_{IV-I} = \left(\frac{1}{16} \right)$

<table>
<thead>
<tr>
<th>F_{IV-I}</th>
<th>F_{IV-I}</th>
<th>F_{IV-I}</th>
<th>F_{IV-I}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\left(\frac{1}{2} \right)^{6-1}$</td>
<td>$\left(\frac{1}{2} \right)^{5-1}$</td>
<td>$\left(\frac{1}{2} \right)^{3}$</td>
<td>$\left(\frac{1}{2} \right)^{2}$</td>
</tr>
</tbody>
</table>

↑Table 1. Inbreeding Coefficients

←Figure 9. Simplest genetic digraph of the inbreeding relationships of the pedigree shown in Figure 6.
Figure 10. Cyclograms which project the inbred components of the different inbreeding patterns which prevail among Egyptians.

Computer Software
We have developed two different pieces of software to help students learn how to build and interpret pedigrees. Our older software, the Pedigree Construction Kit (Calley, Soderberg, and Jungck, 1990) allows the user to see multiple pedigrees generated for autosomal dominant and recessive and X-linked dominant and recessive traits (see Figure 11).

The palette of Inherit has a number of tools for creating, editing and displaying pedigrees. These are labeled in Figure 13 which shows the palette driven data base management system called Inherit that allows users to build pedigrees from scratch and to build a variety of templates for each individual. Since this is such a powerful tool and is easily available, we will only share two aspects as shown in Figures 13 and 14.

After choosing a pedigree type from the generator, multiple examples (as many as your computer memory will allow) will be generated upon your command (Figure 12). The individuals in a pedigree can be moved laterally if that helps you clean up their appearance. Generally, we find that students print out several copies of each pedigree to carry out further analysis.

More recently, we (Jones, Calley, Soderberg, and Jungck, 1994) have developed a pedigree

when it is in Show Phenotype mode; there is also available a Show Genotype mode.

Nichols, Sheffield, and Stone (1993) have developed a Hypercard stack which is especially useful for linkage analysis. Also, Don Buckley at the University of Hartford is about ready to release a Supercard application on pedigree analysis that illustrates the transmission of alleles through a pedigree.
Figure 12. A PCK-generated pedigree

Figure 14. This is an example of one of dozens of templates that can be employed in Inherit to develop a clinical history for any individual in a pedigree that is being constructed.

Figure 13. The Palette of Inherit in "Show Phenotype" mode.
Using Pedigrees to Raise Social and Ethical Issues

Genetics is an ideal subject through which to explore controversial issues with students. Advances in genetic technology have raised dilemmas that have elicited strong emotional responses. The use of case studies and role playing scenarios can provide opportunities for students to acquire a better understanding of the complexities of controversial issues (see Table 2).

With PCK and/or Inherit, limitless combinations of situations can be created for classroom use. PCK facilitates flexibility in designing cases. A number of pedigrees can be generated and fit to a family history in numerous ways, or different disorders with the same mode of inheritance can be fit to the same pedigree. In either case, different issues will arise and different choices may need to be weighed. The involvement and creativity of the students make each case study unique. A case can be constructed around any genetic disorder. Pedigrees are generated by setting the mode of inheritance of a particular disorder along with preferences in regard to family size. A family history can then be written that describes the individuals represented in the pedigree. This will be illustrated with a case involving Marfan syndrome, an autosomal dominant disorder. Through this case, issues, choices and options can be examined, from a genetics counselor’s position as well as from the point of view of each of the family members and their friends, colleagues and neighbors.

Table 2. Bioethical Issues that can be Raised Using Case Studies

<table>
<thead>
<tr>
<th>confidentiality</th>
<th>disclosure/informed consent</th>
</tr>
</thead>
<tbody>
<tr>
<td>prenatal screening</td>
<td>non-paternity</td>
</tr>
<tr>
<td>quality of life</td>
<td>individual rights (autonomy)</td>
</tr>
<tr>
<td>issue of individuality - when does life begin and end?</td>
<td>eugenics - "playing God"</td>
</tr>
<tr>
<td>euthanasia and the prolongation of life</td>
<td>right to decide (competency)</td>
</tr>
<tr>
<td>intervention</td>
<td>allocation of medical resources:</td>
</tr>
<tr>
<td>prevention vs. cures</td>
<td>acceptability of risk and cost-benefit analysis</td>
</tr>
</tbody>
</table>

A Sample Case Study

In 1986 an article appeared in *Sports Illustrated* magazine concerning the death of volleyball star Flo Hyman. Autopsy revealed that she had had Marfan syndrome and had died from an aortic aneurysm. Individuals who have Marfan syndrome tend to be tall and lanky. Several basketball players who had been diagnosed as having Marfan syndrome or who had died from it were discussed in the article. Anne and her parents read this article and wondered if Anne had Marfan syndrome.

Proband Information

Anne is 16 years old, 5’11”, plays varsity volleyball and basketball, wears contact lenses to correct nearsightedness, has slight scoliosis, a concave sternum, long fingers and toes, and wide spaced eyes. Her arm span exceeds her height by 5 inches, she wears orthodontic braces, and she is slightly knock-kneed.

The first decision that will have to be made is Anne’s diagnosis. The proband information was hypothetically gathered from the first part of a visit to a clinical genetics center - the physical exam. Does she or does she not have Marfan syndrome? What information do you need to gather in order to make a diagnosis? Are there any confirmative tests for this particular disorder? What additional information will you need to know?

Most students will be unwilling to commit to a diagnosis on the basis of the information provided from the hypothetical physical exam. They are typically surprised and uncomfortable with the realization that there is no definitive test to base their answer on in this particular single gene disorder. Karyotyping can only reveal chromosomal aberrations, not single gene problems, and no DNA markers are available for analysis for Marfan syndrome. The idea that their diagnosis will depend on their best decision, given the information at hand, is disquieting. Most students are used to some source of confirmation of a "right" answer. A scenario such as this can force them to re-think what it means to label an answer as correct.
Siblings and Their Spouses

David - Age 25, married to Jessica (age 25), one daughter named Kristi (3 mos.), David wears glasses, is 6'3", has long fingers and toes, played basketball and ran track in high school, had some knee problems then.

Jessica - Age 25, 5'8", no glasses, no health complaints, had one miscarried pregnancy in her first trimester prior to the birth of daughter Kristi.

Cheryl - Age 14, 5'9", no glasses, slight case of scoliosis, born with club feet that responded well to treatment.

Parents

Mary - Age 47, 5'7", wears glasses, hay fever, has been diagnosed with carpal tunnel syndrom and mild diabetes, had two miscarriages in addition to her three children.

Peter - Age 49, 6'1", wears glasses, concave chest, high blood pressure, partial dislocation of lens in right eye, long fingers and toes.

Aunts and Uncles

Mary's siblings:

Dorothy - Age 46, wears glasses, 5'3", no major health problems, had an ovarian fibroid tumor removed at age 40, married with four children.

Ellen - Age 50, 5'5", high cholesterol, unmarried, no children.

Eric - Age 51, 6'0", wears reading glasses, back problems from car accident, suffers from exercised-induces asthma, is married and has two children from first marriage and three from his second.

Peter's siblings:

Frank - Age 55, 6'4", wears glasses, slight hearing loss in one ear, was treated for alcoholism, is a heavy smoker and has developed chronic cough, divorced, the father of two children.

Alice - Age 56, 5'7", wears glasses, arthritis in one shoulder, married, has one daughter and a son who was born with cerebral palsy.

John - Deceased, heart attack at age 46, 6'2", had a dislocated lens in his right eye, had three children; the youngest girl is mildly mentally retarded and lives with his wife.

Larry - Age 58, 6'3", no glasses, high blood pressure, divorced twice, he now lives alone, had two children by his first marriage and one with his second wife, reported to be a heavy drinker.

Maternal Grandparents

Evelyn - Died at age 76 of a stroke, 5'4", arthritis in hands and feet, wore reading glasses, was said to have had as many as five miscarriages.

William - Age 81, no glasses, 5'10", no major health problems.

Paternal Grandparents

Martha - Age 86, 5'8", high blood pressure, some knee and ankle problems, wears glasses for distance and reading.

Charlie - Died at age 44 of a heart attack, severe vision problems, long fingers, described as tall and lanky, contracted polio at age 26 and had been wheelchair dependent since his polio treatment.

Table 3. Anne's Family History

When the students request information about Anne's family members to aid them in their diagnosis, they can be given a family history and pedigree (see Table 3). Each small group of students must come to a consensus regarding a diagnosis for each family member. Who has Marfan Syndrome and who does not? Their decisions will impact on the counseling issues they will explore next.

Despite the additional family information that has been given to the student groups, they are still often reluctant to commit to making decisions regarding diagnoses. However, faced with a case where they will have to come to consensus, the students will come to understand some of the complexities of human genetics as they learn about specific disorders. The next section will provide the instructor with the information about syndromes and pleiotropy that can be taught from this case about Anne and her family.

About Syndromes, Pleiotropy, and the Diagnosis of Marfan Syndrome

A syndrome represents a disorder with a range of possible characteristics and severities. Not all individuals with a given syndrome will have the
same set of symptoms, yet each will have some sort of combination from the range of symptoms common to that particular disorder. In other words, not all individuals will fit the standard textbook list of symptoms for that disorder, yet there will be many similarities among individuals with the syndrome. This is true for Marfan syndrome (see Table 4).

Most syndromes are also examples of pleiotropy, multiple effects caused by a single gene. For example, in people with Marfan syndrome, you may see myopia; long limbs, fingers and toes; spinal curvatures; and aortic root dilatation with the consequence of an aortic aneurysm. All of these symptoms seem unrelated, yet are caused by a single gene (Marfan syndrome is an autosomal dominant disorder). However, in most cases of pleiotropy, if the underlying phenomenon can be identified, then the seemingly disparate symptoms can be understood in light of the causal mechanism. In Marfan syndrome, the genetic defect results in the production of suboptimal connective tissue. Each one of the Marfan symptoms can be explained in terms of this defect. The eye lens is held in place by connective tissue. If the tissue is defective, the lens may move, causing myopia, or in severe cases, lens dislocations. Connective tissue is also the initial base material in long bone formation. This can result in the longer than average limbs and digits seen in most individuals with Marfan syndrome.

The aortic root dilatation and aortic aneurysms can be explained by the defective connective tissue found in arteries. In Marfan syndrome, the aorta is the focal point of the defect--it is under great force as the blood is forcefully ejected from the ventricle and enters the curvature of the aorta. This constant pounding of the blood against the wall of the aorta can lead to minute tears and stretching. Progressive damage to the aortic wall can ultimately result in rupture, otherwise referred to as an aortic aneurysm.

When diagnosing a genetic disorder, some of the most salient information comes from the family history. It is very important to sift carefully through the information obtained about each family member - what information is pertinent to the disorder in question, and what is unrelated health information? For example, an individual with Marfan syndrome is at increased risk for aortic dilatation and subsequent aneurysm. In taking a family history, you may discover that a family member has high blood pressure. It is unlikely that this is related to Marfan syndrome. However, you may also learn that several family members wear glasses. Again, vision problems may be a result of Marfan syndrome, or they may have other causes. Syndrome diagnosis is based on the presence of several symptoms occurring together, each of which can occur independently in the general population.

Creating a Family History for a Case Study
When creating a family history from a PCK-generated pedigree, choose the "extraneous" symptoms carefully. It is desirable to have some ambiguity so that students will debate the relevance of a health problem to the disorder in question. What information offers clues or insights into the identification of individuals at

| arm span greater than height (3-6 inches) |
| long fingers and toes |
| prominent shoulder blades |
| spinal curvature (scoliosis and thoracic lordosis) |
| dislocated eye lens |
| flat feet |
| highly arched palate with crowding of the teeth |
| myopia |
| mitral valve prolapse |
| mitral regurgitation (heart murmur) |
| lax joints |

Table 4. Marfan symptom descriptors

risk in the family? What information is incomplete? What additional information do you need to make a diagnosis? What family and individual issues and concerns should be addressed during the counseling session?

This particular case study was created by choosing symptoms from a list of descriptions about Marfan syndrome and assigning them to individuals in the pedigree generated by PCK. Table contains a list of the spectrum of symptoms seen in individuals with Marfan syndrome. Such descriptors can be found in a variety of sources, including human genetics reference books and texts, the On-line Mendelian Inheritance in Man (OMIM), and public education information from organizations such as the March of Dimes. Once the Marfan descriptors were assigned to various individuals, other health problems were chosen and assigned to the individuals.

Once the family history has been created for
the pedigree, the case study can be enriched by creating role play statements to give to the small groups to analyze in addition to the family history information. The role play statements are meant to help students recognize and understand the emotions of guilt, blame, anger, shame and denial that surround the birth and life of a person with a genetic disorder. Additionally, they create situations in which the students must put themselves in the roles of various members of the hypothetical family that is faced with reproductive decisions. What would they do if they were facing this situation, and more importantly, why did they make the choices they did? The students will have to assess their reproductive options (e.g., prenatal testing, artificial insemination by donor, adoption, no children, etc.) and the emotional implications of each. Role play statements generally fall into two categories: those that are generalizable to most genetic disorders, and those that are disorder-specific situations. Here are three examples of role statements that can be used with the sample case study.

Anne refuses to quit playing varsity level athletics despite the fact she is at risk for an aortic aneurysm. There is a good possibility that she will receive a full college scholarship upon graduation from high school.

Mary, Anne’s mother, is terrified at the possibility that Peter may die at an early age. Mary has agoraphobia and experiences occasional panic attacks from anxieties about being in public places.

David and Jessica have planned on having two children.

Prenatal Tests
1. Ultrasound (major congenital malformations or deformations)
2. Serum AFP (neural tube defects)
3. Amniocentesis
 a. amniotic AFP
 b. Chromosomal abnormalities
4. Chorionic villi sampling (CVS)
 a. chromosome abnormalities
 b. DNA analysis (some single gene disorders)

Carrier Testing
- by enzyme assays
- by DNA analysis

Table 5. Possible Tests for Genetic Disorder

Amniocentesis
- The results from your amniocentesis show a chromosome abnormality.
- The results from your amniocentesis do not show a chromosome abnormality.
- The cells taken from the amniocentesis did not grow. Would you like to have it performed again?

AFP Testing
- The results of your blood serum test indicate a higher than average AFP level. Would you like us to go ahead and test your amniotic fluid values?
- The results of your AFP testing was normal.
 - The results of your amniocentesis show a higher than average AFP value.
 - The results of your amniocentesis show a normal level of AFP.

Carrier Testing
- The results of your carrier test were positive.
- The results of your carrier test were negative.

Table 6. Some Examples of Outcomes Cards

Additional suggestions for role play statements that can be used when creating case studies can be found in the Appendices.

Ask the students to first place themselves in the role of the individual family members. What reactions, questions, concerns, and fears will each of the family members have? What ethical dilemmas or psycho-social implications are raised by the decisions that confront both the affected individuals and the individuals who do not have the disorder? In addition, what options and decisions must be made regarding prenatal and carrier status testing (see Table 5).

The role play scenarios can be extended to include outcomes of the decisions made by the students. First, what type of testing is appropriate for this case? Then, if students decide they would opt for prenatal or carrier testing, they can find out the results of their test by drawing from a stack of Outcome Cards, such as those listed in Table 6. In any scenario that involves testing, the students should consider the possibility of false negatives and false positives. Finally, what surprising additional inferences might be drawn about the inheritance of other characteristics of the individuals in the pedigree?
SECOND CALL FOR PRESENTATIONS

Association of Midwest College Biology Teachers (AMCBT) CONFERENCE
September 28-30, 1995
Alverno College
Milwaukee, Wisconsin

Do you have:
- Labs that work?
- Interesting Teaching Methods?
- Tips on Teaching Nonmajors?
- Useful Software?
- Exciting Demonstrations?

The AMCBT 1995 Meeting will focus on:
Breaking Through Technological Barriers
Papers, Posters, Software, Media, and Workshops are invited

Final deadline—April 15, 1995

<table>
<thead>
<tr>
<th>Name:</th>
<th>Institution:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address:</td>
<td></td>
</tr>
<tr>
<td>Work Phone:</td>
<td>FAX Number:</td>
</tr>
<tr>
<td>Email Address:</td>
<td></td>
</tr>
</tbody>
</table>

Check One:
- [] 45 min Oral Presentation (including discussion)
- [] 30 min Oral Presentation (including discussion)
- [] Workshop (2-3 hours)
- [] Other (specify)

Title of Presentation:

Abstract:

Special equipment or facilities required:

Return to Buzz Hoagland, Department of Biology, Westfield State College, Westfield, MA 01086-1630. Telephone: 413-572-5308, FAX: 413-562-3613, Email: D_HOAGLAND@OWL.WSC.MASS.EDU.
News and Views

Time's Arrow, Time's Cycle: Myth and Metaphor in the Discovery of Geological Time,
by Stephen Jay Gould
Cambridge Massachusetts: Harvard University Press, 1987

Book Review
by
Patti Soderberg
University of Wisconsin - Madison
Madison, Wisconsin 53706

Stephen Jay Gould is a Harvard University paleontologist who has written a number of popular books on various areas of natural history and evolution. Typically Gould's books are compilations of the monthly essays he writes for Natural History. This particular slim volume is different. The material contained in this book was written to work out and share some intellectual ideas that he has been grappling with for some time, namely, extending his insight into how past scientists used geological evidence to support arguments about the creation of the earth and the organisms that had lived here and live here now.

In this work, originally delivered as part of the Jerusalem-Harvard lectures, Gould illustrates how early scientists began to portray time as a great abyss. He shares with us his story of how members of the theological/scientific community in the 17th, 18th and 19th centuries made the bottom of the chasm extend darker and deeper than ever before by the publication of their persuasive and compelling arguments.

As a teacher of geology and evolution, Gould struggles with how he can help his students understand and appreciate "deep time". Gould states, "An abstract, intellectual understanding of deep time comes easily enough - I know how many zeros to place after the 10 when I mean billions. Getting it into the gut is quite another matter. Deep time is so alien that we can really only comprehend it as a metaphor" (pg. 3). The metaphor that Gould chooses to use as a tool to more closely analyze the historical debate of the origin of earth and species is the dichotomy of time as arrow and time as cycle.

As scientists began acknowledging the concept of deep time from the period ranging from the mid-1600's through the early 1800's (Gould presents a quote from Rossi declaring that men in Hooke's time believed the earth to have a past history of 6,000 years while men of Kant's time were conscious of a past of millions of years), Gould chose to focus on the work of three famous scientists, each of whom worked during one of the three centuries in which deep time was accepted. Gould sets the stage by explaining, "... I have selected for intensive discussion only three cardinal actors on the British geological stage - the primary villain and the two standard heroes" (p. 4). As his argument unfolds, the reader learns that the basis of Gould's labels of villain and hero stem from his belief that the geology textbooks have grossly misrepresented the work of these three gentlemen by providing readers with a shallow and flimsy "cardboard history" depiction of the scientific community of this period by reducing the debate down to the religious catastrophists versus the atheistic uniformists. Gould cautions that Thomas Burnet, who wrote the Sacred Theory of the Earth in the 1680's, is portrayed by geology texts as a villain obscuring the way to scientific truth by popularizing the role of catastrophes while James Hutton, who published his Theory of Earth one hundred years later and Charles Lyell, who published the persuasive Principles of Geology in the 1830's are portrayed as the heroes of the scientific community, championing the reality of uniformity. Gould's work fabulously stands this cardboard representation on its head through his meticulous analysis of the arguments of the day by using his metaphoric tool of time as linear and time as circular.

Gould begins his analysis of Thomas Hutton's work by providing the reader with the frontispiece of Burnet's Sacred Theory of the Earth, which depicts Jesus standing on top of seven stages of the earth arranged in a circle beneath Jesus' feet. The engraving depicts the birth and the destruction of the earth as a distinct, never-
ending cycle. Thomas Burnet, we learn, was an Anglican clergyman, a practicing theoretical scientist at a time when the concept of science as a separate entity from religion was not yet discussed. Burnet was searching for rational, physical explanations for the great flood that wiped out all living things, save for Noah and the contents of his ark as depicted in the Bible. He attempted to speculate what the perfect earth was like before the flood, to look for geologically based explanations for enabling the flood to occur, and to describe the earth as it moves to destruction and renewal returning to the perfect earth.

If the Bible was to be taken literally, the earth was formed in six days. Burnet knew this was not true. He was not a biblical literalist, but was actually daring enough to publish work that could be viewed as blasphemous by his clerical colleagues. To work out his questions, Burnet corresponded regularly with Sir Isaac Newton. The letters provided the data Gould needed to track the evolution of Burnet's ideas. Gould describes how Burnet concludes one letter describing the great comet of 1680. Gould tells us that two years later that Halley would predict that another, smaller comet would return again in sixteen years. Halley's comet was in the sky as Gould wrote this book, and he offers this wondrous event as "... a primary signal of time's cycle (pg. 41)." Burnet was attempting to do for creationism what Newton did for matter and motion in the physical world - he was attempting to find the laws that govern the nature of creation and destruction of living things.

Burnet believed that the cyclical nature of birth and re-birth of the planet must also include the idea of progress over time. He visualized the original earth as consisting of perfectly smooth, concentric layers. The flood, he reasoned, arose from the water by emerging from one of the inner concentric layers and the craggy earth as it appears today occurred when the crust collapsed into the space that was previously occupied by the water. The land eventually erodes over time, falling back into the sea, until the time of conflagration occurs and the planet once again becomes the perfect, smooth round ball. This is time's cycle at its clearest. But Burnet, Gould proves, also believed in the notion of progress, time's arrow. He offers evidence in passages where it is clear that Burnet believed that there is directionality to time and that progress is inherent to directionality. For example, Burnet states that organisms are born, they grow, they die. Burnet, like his Danish colleague Steno, searched for vectors within the greater cycle of time.

Hutton's work, which followed in the next century, may have been lost, Gould points out, primarily due to its unreadability if it were not for Hutton's good friend John Playfair, who presented his friend's ideas in a much more accessible style of writing in his book Illustrations of the Huttonian Theory of the Earth published in 1802. Hutton, Gould claims, imposed "... the most pure and rigid concept of time's cycle ever presented in geology - so rigid, in fact, that it required Playfair's recasting to gain acceptability (pg. 63)." Hutton relied on large amounts of empirical evidence to support his argument that the land cycles through a series of destruction through erosion, consolidation through pressure and heat and subsequent renewal through upheavals. Gould uses Hutton's classic line "no vestige of a beginning, no prospect of an end" (p. 63 & 65) to illustrate the author's clear belief in and dependence on the metaphor of time as a cycle.

Hutton differed from Burnet in that he believed that there is a mechanism to repair decay, the concept of uplift. So, when the mountains erode to provide soil and wash into the seas, strata build up in the seas where increasing pressure causes heat, which in turn causes the inner matter of earth to expand with force, causing uplift. These uplifts can be seen in unconformities, as depicted in an artist's portrayal of one of Hutton's first observations (provided at the beginning of Gould's section on Hutton).

Gould claims that Hutton is canonized in today's textbooks as the first empirical geologist, while Burnet has been castigated as the bad guy speculativist when the opposite is really true. Gould believes that although the frontispiece of Burnet's work depicts time as a cycle, his narrative portrays time as an arrow. Gould feels that this deeply held view of time as an arrow actually hindered Burnet from understanding the importance of using the view of time as a cycle as the later naturalists Hutton and Lyell successfully used to formulate explanatory laws for geological events.

Charles Lyell, like Hutton, believed in the cycle of time, and similarly did not argue for the concept of process. Lyell eloquently argues for the notion of time as arrow in his explanation of the empirical events noted in his work. Gould portrays Lyell as a superb rhetorician. He believes
that Lyell did far more than simply put down the "unscientific" catastrophists. Gould proves that the dichotomy of the war between catastrophists and uniformitarians is a false one, by providing us with evidence of Agassiz' support and praise that he found in the margins of Agassiz' copy of Lyell's Principles of Geology, a three volume work published between 1830 and 1833. Lyell believed that change occurred slowly and gradually over time and castigated catastrophism as being anti-empirical. He championed his own story of the triumph of uniformity through "perhaps the neatest trick of rhetoric," by claiming that if the methodological principles were true, then the substantive claims he derives from the methods must be true, too. Lyell managed to use theory to cover for imperfect data. Lyell criticized Hutton's catastrophic portrayal of upheavals. He smoothed his own argument for uniformity by believing that species that no longer exist, as evidenced by the fossil record, can one day exist again; Gould presents this belief at the beginning of the chapter on Lyell in a caricature by De la Beche portraying a future Lyell reincarnated as an ichthyosaurus which is teaching his long-billed students about the extinct humans from a pulpit on top of a human fossilized skull.

Gould shows us that Burnet was not the speculative armchair theorist that he is made out to be, but actually was the person who used empirical observations and careful logic to depict time more fruitfully as both an arrow and a cycle. On the other hand, Hutton and Lyell, typically presented as the objective scientists bringing enlightenment to the unscientific world of religion, actually held beliefs that are less accurate in the eyes of many present day evolutionary biologists and paleontologists.

becoming a key to unlocking greater insight into historical arguments came to Gould when he was on break from a "boring" meeting at the National Museum of Art in Washington, D.C. He saw at this gallery James Hampton's intricate throne on exhibit, carefully crafted out of bits of foil, wire, and other items he was able to gather at no or little expense. As Gould states at the end of his book, "This book concealed during the next ten minutes, one of those magic moments in any scholar's life" (p. 184). Gould shares the magic of his epiphany to a larger audience through the publication of this book.

In places Gould's argument is fascinating and illuminating, but it also can be frustrating for a reader who may be nominally knowledgeable in evolutionary biology, but uneducated in the geologic debate and players who underlie it. Gould's analysis of Hutton's work was wonderfully illuminating and captivating, but the analysis of Burnet and Lyell's work was difficult to grasp. He was obviously enthused and loving in his writing about these famous men, but I found myself reading and re-reading sections asking, what does he mean here, or what is he trying to do here? The intricacies of the use of the metaphor of time as a linear arrow and also as an endless cycle is obviously deep in Gould's belly, but as a recreational reader of history of science, I found it frustrating and irritating that he did not set the scene well enough for me to also be able to develop a gut-level appreciation of the debates at the time. I struggled with gaining a better appreciation of the complexities and subtleties of the times. Finally, after re-reading section after section, I realized that despite being forewarned early in the introduction, I had been one of Gould's students who asked naively, which was better, time's arrow or time's cycle? So despite recognizing at one level the inappropriateness of the question, I was a student in his course frustrated by his response of "both and neither". Once I understood the wrongness of the question and held it as a talisman through my reading, I understood the beauty of his argument. He is convincing us that the idea of time as an arrow and as a cycle is deeply held in western Judeo-Christian thinking. His originally perplexing final chapter about James Hampton finally makes sense. Gould is describing how seeing a poor, black janitor's creation of an appropriate throne for Christ has incredibly managed to capture this metaphor so completely.

So, what is the message to those of us who are scientists and science educators? The Chinese cookie take-home message is, beware of re-writes of other people's work in the guise of textbooks full of answers.

As Gould admonishes the skeptics among us, "But what does it matter? What harm is a bit of heroic folderol about an illusory past, especially if it makes us feel good about the progress of science? I would argue that we misrepresent history at our peril as practicing scientific researchers" (p. 114).

The power of the arrow/cycle metaphor

VOL 21(1): March 1995		BIOSCENE 25
"The disquieting truth of academic life today is that teaching is widely undervalued. The unspoken gameplan seems to be to speak of the importance of teaching but to evaluate faculty primarily for scholarship and professional activity."

Seldin, 1991 (Pace University)*

Dear Colleague:

Teaching is a difficult and challenging part of your job. You put a lot of effort into making your classes exciting and effective. How can you make this effort visible to the peers and administrators who evaluate your performance?

Everyone in academia knows that teaching is hard for anyone outside the classroom to "see." Faculty are reluctant to take student evaluations alone as evidence of teaching skills, and there are few other ways to demonstrate your teaching excellence.

"The fruits of scholarship: books, scholarly articles, and paper presentations are fairly self-explanatory and standards exist to indicate their relative merit. Unfortunately, there is no comparable structure for faculty to establish and document the quality of their teaching."

Galagno, 1991 (James Madison University)*

The Association of Midwestern College Biology Teachers (AMCBT) is dedicated to providing opportunities for you to share your teaching ideas in a public forum. At AMCBT's annual conference you can meet other Biologists who take their teaching seriously, and share ideas in formal presentations or workshops covering everything from laboratory problems to the latest ideas in teaching scholarship. Papers from previous conferences include:

Honors Biology: Teaching Research Design
Writing your own Computer Tutorials
Use of the Winogradsky Column to Demonstrate Biodegradation
Writing in Biology: Increasing Critical Thinking and Research Skills
Using Cooperative Learning in Biology Teaching and Assessing
Immunocinjugates for Selective Delivery of Drugs
Chronobiology: Teaching Endocrine Rhythms in the Lab
A Team-Taught Course in Bioethics
Your best teaching ideas could be among this year's presentations.

"A movement we might label 'Taking Teaching Seriously' is spreading across the country. There is hardly a campus that is not in some stage of reexamining its commitment to teaching and approaches to the improvement of teaching."

Edgerton, 1991 (AAHE)*

Your membership in AMCBT will not only help you meet new colleagues and share new ideas, but entitles you to receive and submit papers to Bioscene, a peer-reviewed Journal of College Biology Teaching. It also offers you the chance to participate in projects like the definition of standards for undergraduate Biology curricula and the Coalition for Education in the Life Sciences (CELS), of which AMCBT is a member.

The Association of Midwestern College Biology Teachers is a professional organization that takes teaching as seriously as you do. We hope you will join us in sharing teaching methods and working to make teaching a respected part of academic scholarship.

Yours Sincerely,

Sr. Marion Johnson, Past President
Association of Midwestern College Biology Teachers

"By its very nature, teaching is evanescent. What does a faculty member have to show for all that effort at the end of a semester? A syllabus, a stack of corrected bluebooks, and perhaps some student evaluations. His or her lectures or seminars are rarely attended by colleagues or videotaped for posterity. The teacher is thus a bit like an actor whose performances theater critics never get to see. The theater program shows that he played Hamlet all last fall; but how do the critics know whether he was any good?"

Wilkinson, 1991 (Harvard)*

* all quotes are from the OAH Council of Chairs Newsletter, June 1991.
BREAKING THROUGH TECHNOLOGICAL BARRIERS

AMCBT 1995 FALL MEETING
TENTATIVE SCHEDULE
Alverno College
Milwaukee, Wisconsin
SEPTEMBER 28-30, 1995

Thursday, September 28
6:00-8:00 p.m. REGISTRATION RECEPTION Nursing Building

8:00 p.m. OPENING SESSION Nursing Building, Wehr Hall
Welcome for AMCBT
Donald "Buzz" Hoagland, Program Chair
Patricia Bowne, David Ferris, Leona Truchan, Local Arrangements

WELCOME to Alverno College
PRESIDENTIAL GREETING: Harold Wilkinson

OPENING ADDRESS:
Making Sense of New Medical Technologies
Suzanne Amador, Department of Physics, Haverford College, PA

9:00 p.m. EXECUTIVE COMMITTEE MEETING (to immediately follow opening session)

6:00-8:00 p.m. & OPEN COMPUTER LAB- software previews, electronic bulletin board, etc. Nursing Building
9:00-12:00 midnight

Friday, September 29
7:00 a.m. REGISTRATION Alumni Hall

7:00-8:10 a.m. BUFFET BREAKFAST Alumni Hall
(price included in registration)
Interest Groups by Discipline

7:30-12:00 am FIELD TRIPS I ($5.00 each)
1. Wehr Nature Center/Mitchell Park (Birding)
2. Cedarburg Bog
3. Boerner Botanical Gardens/Mitchell Park

8:30-12:00 am FIELD TRIPS II ($5.00 each)
1. Museums/Historical Buildings Tour
2. Brewery Tour
12:00-1:00 p.m. OPEN LUNCH

1:00-2:00 p.m. KEYNOTE ADDRESS
Title:
Speaker:

2:10-3:25 p.m. CONCURRENT WORKSHOP SESSION I
1. MACROMEDIA DIRECTOR AS AN AUTHORING TOOL
 Mark Bergland, University of Wisconsin, River Falls
2. GENBANK
3.
4.
5.

3:25-4:15 p.m. COFFEE, POSTERS, EXHIBITS

4:15-5:00 p.m. CONCURRENT PAPER SESSION I
1. FRACTAL GEOMETRY IN BIOLOGY
 John R. Jungck, Beloit College, Beloit, WI
2. CONSTRUCTING ONE-PAGE TAXONOMIC KEYS
 Norman Waldow, Maryville University, St. Louis, MO
3. HISTORICAL LIFE SCIENCE TECHNOLOGIES IN THE CLASSROOM
 Philip Wilson, Northeast Missouri State University, Kirksville, MO
4. THE BIONIC TEACHER
5.

5:00-6:00 p.m. BIOSCENCE EDITORIAL BOARD MEETING

6:00-7:00 p.m. SOCIAL HOUR

7:00 p.m. BANQUET (price included in registration)
8:00 p.m. BANQUET SPEAKER
Title:
Speaker:

9:00-12:00 midnight INTERNET WORKSHOP I (World Wide Web; CDC, NMFS, THOMAS and other goverment Home Pages; AMCBT Home Page; etc.)
 Tim Mulkey, Indiana State University, Terre Haute, IN; Ethel Stanley, Millikin University, Decatur, IL; Karen Klyczek, University of Wisconsin, River Falls, WI; Buzz Hoagland, Westfield State College, Westfield, MA
Saturday, September 30
7:00-8:15 a.m. CONTINENTAL BREAKFAST
 Alumni Hall
 Interest Groups by Discipline

8:30-10:30 a.m. BALLOTING
 Alumni Hall

8:30-9:15 a.m. CONCURRENT PAPER SESSION II

1. HOW THE USE OF MULTIMEDIA AFFECTS STUDENT
 RETENTION AND LEARNING IN AN INTRODUCTORY
 BIOLOGY COURSE
 Randy Moore, The University of Akron, Akron, OH

2.
3.
4.

8:30-10:10 a.m. CONCURRENT WORKSHOP SESSION II

1. INTERNET WORKSHOP II: CYBERSPACE REVISTED
 Tim Mulkey, Indiana State University, Terre Haute, IN; Ethel Stanley, Millikin
 University, Decatur, IL; Karen Klyczek, University of Wisconsin, River Falls,
 WI; Buzz Hoagland, Westfield State College, Westfield, MA

2. TEACHING HUMAN BIOLOGY: A WORKSHOP FORMAT
 Marion F. Fass and Marc M. Roy, Beloit College, Beloit, WI

3. AUTHORING PROGRAMS
 Dianne Bell, Avila College, Kansas City, MO

4.

9:25-10:10 a.m. CONCURRENT PAPER SESSION III

1.
2.
3.
4.

10:10-10:30 a.m. BREAK

10:30-11:00 a.m. CONCURRENT PAPER SESSION IV

1.
2.
3.
4.

11:00-12:30 p.m. LUNCHEON (price included in registration fee)
 BUSINESS MEETING

30 AMCBT Annual Conference TENTATIVE Schedule
EXECUTIVE COMMITTEE MEETING
[N.B. Remember that newly elected officers must attend this very important planning meeting.]

1:30 p.m. -

MILWAUKEE'S FINEST! (Zoo, Art Center, Theater, etc.)
Why not join several of your colleagues in extending the meeting informally?

Why Come to Milwaukee September 28-30, 1995?

This year's AMCBT Meeting will be held at Alverno College, Milwaukee. Alverno is unique among U.S. colleges and universities because of their ability-based approach to education. This approach has gained them national recognition as a leader in making college education work. Alverno is minutes from downtown Milwaukee and only minutes from Mitchell International Airport. Pat Bowne, David Ferris, and Leona Truchan invite you to participate in a conference that promises to be as unique as Alverno. For example, opportunities to discover Milwaukee's natural and cultural history will not conflict with AMCBT presentations. Additionally, a greater number of hands-on workshops - two accessing the Internet - have been added to the program.

What else might you discover? Did you know that early 20th century Milwaukee was a stronghold of Socialist thought and politics? Have you ever trekked into a forest clearing and felt the ground gently quake with each step? How would you like to watch a miniature train winding its way through 10,000 brightly colored blossoms, witness parallel evolution of euphorbs and cacti, and stroll among kapok, tamarind, and curare vines within a single superstructure? Where can you read The Water Street Journal while feasting upon charbroiled Usinger Bratwurst and Stugarter Knackwurst along with a weizglas of Callan's English Red? The "gathering place by the waters" of course!

The Association of Midwestern College Biology Teachers (AMCBT) is dedicated to providing opportunities for you to share your teaching ideas in a public forum. At AMCBT's annual conference you can meet other Biologists who take their teaching seriously, and share ideas in formal presentations or workshops covering everything from laboratory problems to the latest ideas in teaching scholarship.
Application For Membership

ASSOCIATION OF MIDWESTERN COLLEGE BIOLOGY TEACHERS

NAME: __ DATE: __________________

TITLE: __

DEPARTMENT: __

INSTITUTION: __

STREET ADDRESS: __

CITY: ___________________ STATE: _______ ZIP CODE: _______

ADDRESS PREFERRED FOR MAILING: __

CITY: ___________________ STATE: _______ ZIP CODE: _______

WORK PHONE: ___________________ FAX NUMBER: ___________________

HOME PHONE: ___________________ E-MAIL ADDRESS: ___________________

MAJOR INTERESTS: __

SUB DISCIPLINES: (Mark as many as apply)

() 1. Biology
() 2. Botany
() 3. Zoology
() 4. Microbiology
() 5. Pre-professional
() 6. Teacher Education
() 7. Other

() A. Ecology
() B. Evolution
() C. Physiology
() D. Anatomy
() E. History
() F. Philosophy
() G. Systematics
() H. Molecular
() I. Developmental
() J. Cellular
() K. Genetics
() L. Ethology
() M. Neuroscience
() N. Other

RESOURCE AREAS: __

RESEARCH AREAS: __

How did you find out about AMCBT? ____________________________

Have you been a member before? __________ If so, when? __________

PLEASE MAIL MEMBERSHIP APPLICATION FORM TO:

Edward S. Kos
Executive Secretary, AMCBT
AMCBT Central Office
Department of Biology
Rockhurst College
1100 Rockhurst Road
Kansas City, MO 64110-2561
Phone: 816-926-4049
FAX: 816-926-4666
Email: kos@vax1.rockhurst.edu

CURRENT DUES ARE $25.00

AMCBT Membership 1995